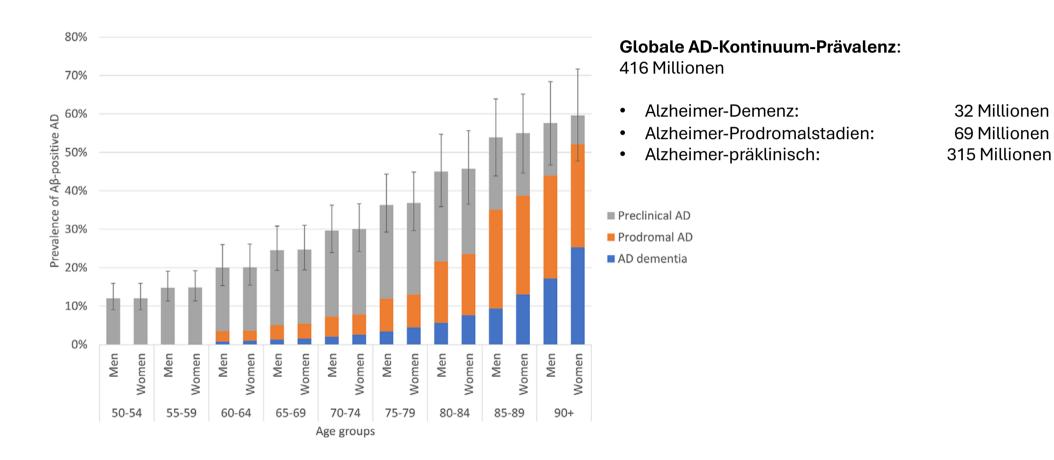
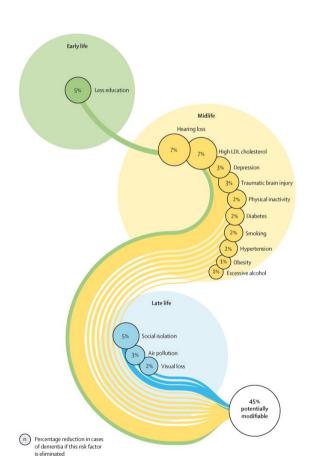
Update Neurologie – Halle Münsterland | 06.12.2025

Alzheimer-Krankheit: Update 2025

Priv.-Doz. Dr. Dr. med. Matthias Pawlowski

Klinik für Neurologie Universitätsklinikum Münster

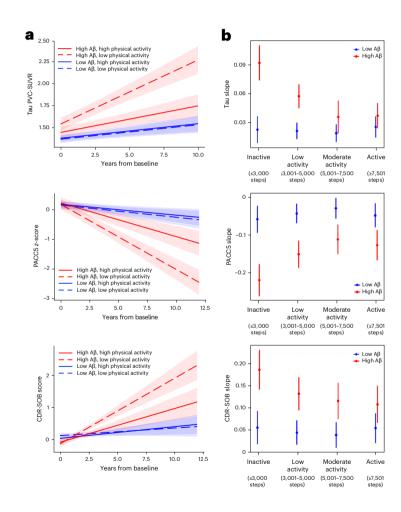




Alzheimer-Krankheit | Prävalenz der Kontinuum-Erkrankung

Demenz-Prävention | Modifizierbare Risikofaktoren

The Lancet Commissions


the Lancet standing Commission

> Gill Livingston, Jonathan Huntley, Kathy Y Liu, Sergi G Costafreda, Geir Selbæk, Suvarna Alladi, David Ames, Sube Banerjee, Alistair Burns, Carol Brayne, Nick C Fox, Cleusa P Ferri, Laura N Gitlin, Robert Howard, Helen C Kales, Mika Kivimäki, Eric B Larson, Noeline Nakasujja, Kenneth Rockwood, Quincy Samus, Kokoro Shirai, Archana Singh-Manoux, Lon S Schneider, Sebastian Walsh, Yao Yao, Andrew Sommerlad*, Naaheed Mukadam*

- Wenig Bildung
- Hörstörungen
- Sehstörungen
- Rauchen
- Arterielle Hypertonie
- Diabetes mellitus
- Adipositas
- Erhöhtes LDL-Cholesterin
- Alkohol (≥21 UK units)
- Schädel-Hirn-Trauma
- 11. Luftverschmutzung
- 12. Depressionen
- 13. Soziale Isolation
- 14. Körperliche Inaktivität

xx. – yy. Schlaf, Ernährung, Infektionen, ...

Körperliche Aktivität

nature medicine

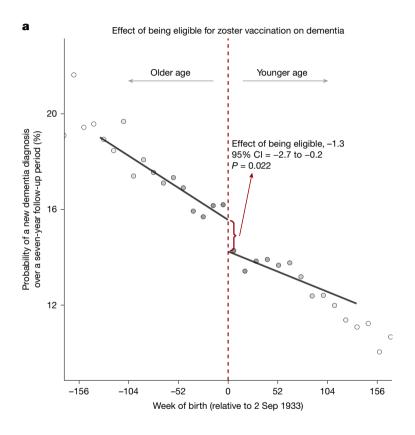
Article

https://doi.org/10.1038/s41591-025-03955-6

Physical activity as a modifiable risk factor in preclinical Alzheimer's disease

Received: 4 December 2024

Accepted: 12 August 2025


Published online: 03 November 2025

Check for updates

Wai-Ying Wendy Yau ® ^{1,2} ⋈, Dylan R. Kirn¹, Jennifer S. Rabin ® ^{3,4,5}, Michael J. Properzi¹, Aaron P. Schultz¹², Zahra Shirzadi¹², Kailee Palmgren¹, Paola Matos¹, Courtney Maa¹, Jeremy J. Pruzin⁶, Stephanie A. Schultz ® ¹², Rachel F. Buckley ® ¹².², Dorene M. Rentz¹², Keith A. Johnson¹².², Reisa A. Sperling ® ¹² & Jasmeer P. Chhatwal ® ¹² ⋈

Yau et al. Nat Med . 2025 Nov 3. doi: 10.1038/s41591-025-03955-6

VZV-Impfung (Wales)

Article

A natural experiment on the effect of herpes zoster vaccination on dementia

https://doi.	org/10.1038/s41586-025-08800-x
Received: 4	November 2023
Accepted:	18 February 2025
Published o	online: 2 April 2025
Open acce	SS

Markus Eyting $^{12.39}$, Min Xie $^{14.9}$, Felix Michalik 14 , Simon He β^5 , Seunghun Chung 1 & Pascal Geldsetzer $^{16.78}$

Neurotropic herpesviruses may be implicated in the development of dementia¹⁻⁵.

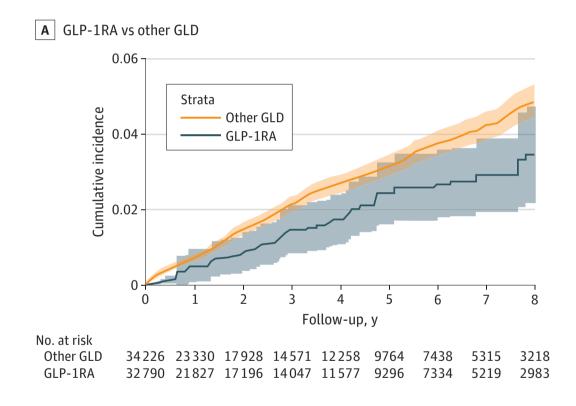
Moreover, vaccines may have important off-target immunological effects⁶⁻⁹. Here we aim to determine the effect of live-attenuated herpes zoster vaccination on the

	Effect size, 95% CI (percentage points)	Р	Effect size, 95% CI (percentage points)
	-3.1 (-5.8 to -0.4)	0.024	
Dementia	-3.5 (-7.1 to -0.6)	0.019	 i
Shingles	-2.7 (-4.3 to -1.1)	<0.01	
	-2.3 (-3.9 to -0.5)	0.011	 !
Postherpetic neuralgia	-0.7 (-1.3 to -0.1)	0.029	•
	-0.6 (-1.4 to 0.1)	0.106	→
			Beneficial ← → Harmful -5 0 5

VZV-Impfung (Australien)

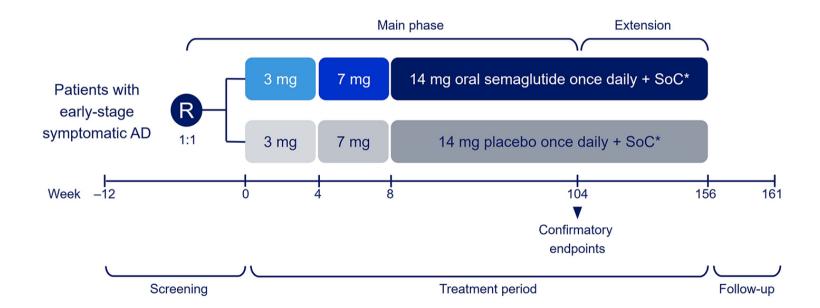
JAMA | Original Investigation

Herpes Zoster Vaccination and Dementia Occurrence


Michael Pomirchy, PhD; Christian Bommer, PhD; Fabienne Pradella, PhD; Felix Michaelik, MS; Ruth Peters, PhD; Pascal Geldsetzer, ScD, MBChB, MPH

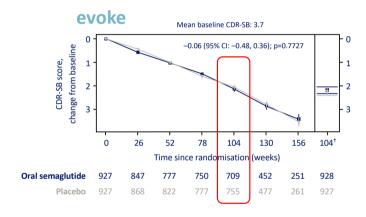
STIKO | Impfkalender

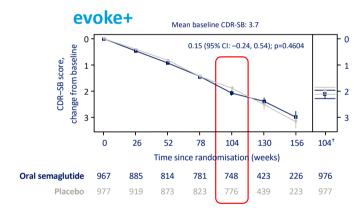
	Alter in Jahren							
Impfung	5-6	7-8	9-14	15 – 16	17	ab 18	60-74	ab 75
	U9	U10	U11/J1		J2			
Tetanus	A1		A2				A ^h	
Diphtherie	A1		A2				A ^h	
Pertussis	A1		A2			A3 ^h		
Poliomyelitis			A1					
Hepatitis B								
HPV – Humane Papillomviren			G1g G2g					
Meningokokken C								
Masern						Si		
Mumps, Röteln								
Varizellen								
P							C.L	
Herpes zoster							G1 ¹ G2 ¹	
Influenza							(مامناسما قنا)	m
COVID-19						Gx ^j	S (jährlich)	m
Respiratorische Synzitial Viren							,	Sn


- 2 Impfstoffdosen des adjuvantierten Herpes zoster Untereinheiten-Totimpfstoff im Abstand von 2 6 Monaten.
 - Shingrix®: in Deutschland zugelassen seit 2018 für Personen ≥18 Jahre.
- Zusätzlich Indikationsimpfung für Personen ≥ 50 Jahre mit einer erhöhten gesundheitlichen Gefährdung infolge einer Grunderkrankung oder für Personen mit angeborener bzw. erworbener Immundefizienz.

GLP-1RA & Demenz-Inzidenz

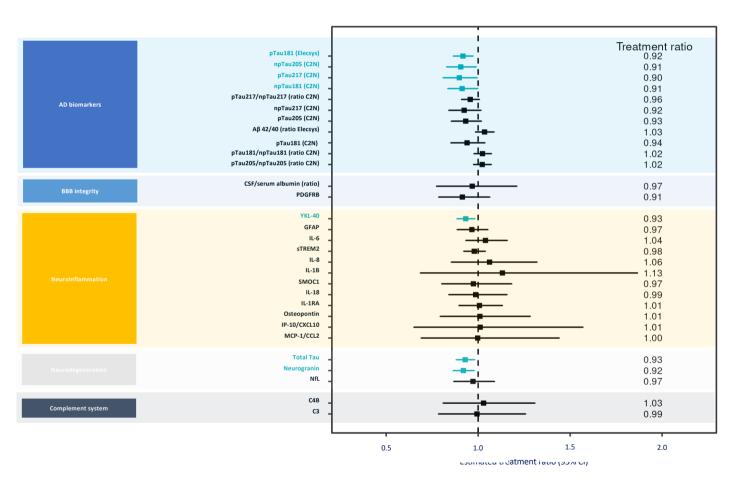
EVOKE (Phase 3) | Semaglutid bei früher Alzheimer-Krankheit


Studiendesign


EVOKE (Phase 3) | Semaglutid bei früher Alzheimer-Krankheit

Primärer Endpunkt: Clinical Dementia Rating – sum of boxes (CDR-SB)

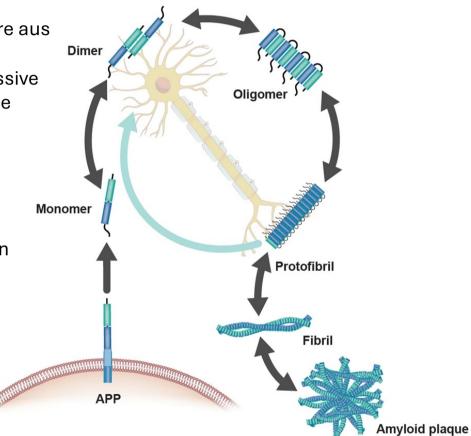
Change in CDR-SB from baseline to week 104



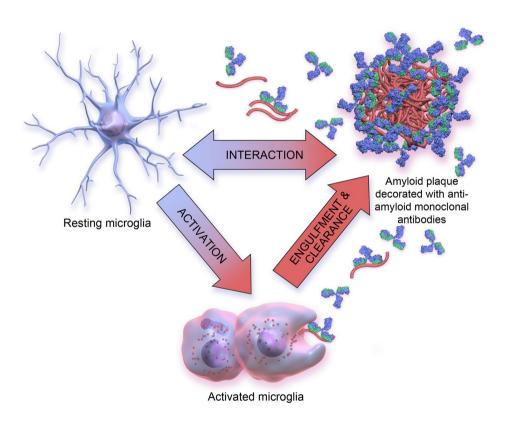
	Estimate [†]	95% CI	P-value
Oral semaglutide	2.2		
Placebo	2.2		
Oral semaglutide – Placebo	-0.06	-0.48 ; 0.36	0.7727

	Estimate [†]	95% CI	P-value
Oral semaglutide	2.1		
Placebo	2.0		
Oral semaglutide – Placebo	0.15	-0.24 ; 0.54	0.4604

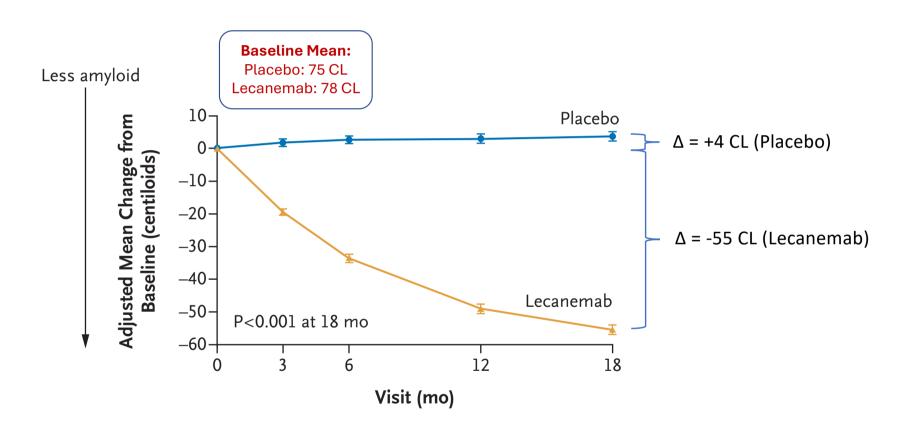
EVOKE (Phase 3) | Semaglutid bei früher Alzheimer-Krankheit

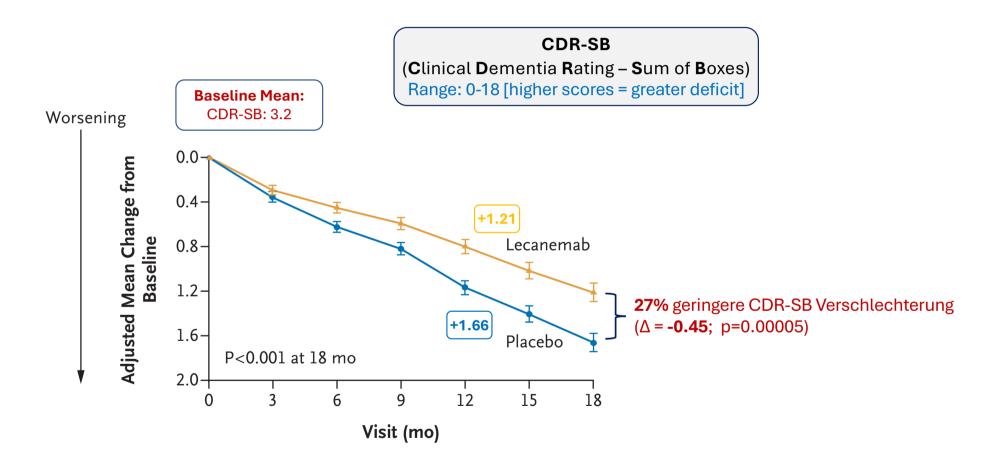


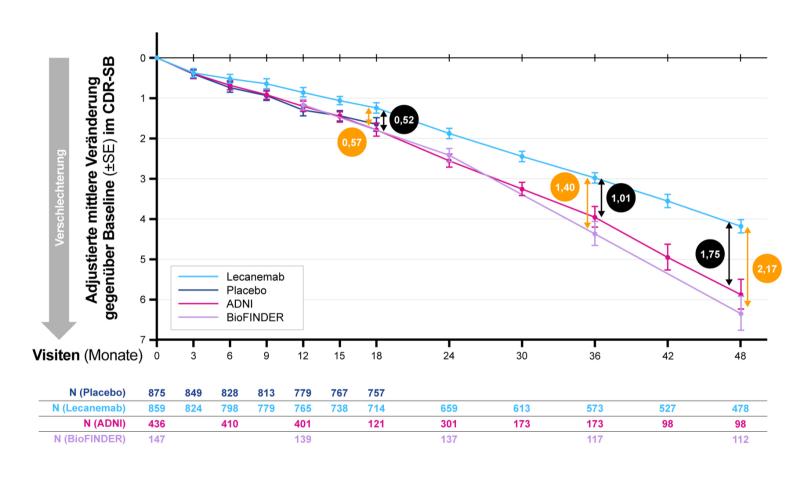
Amyloid-beta

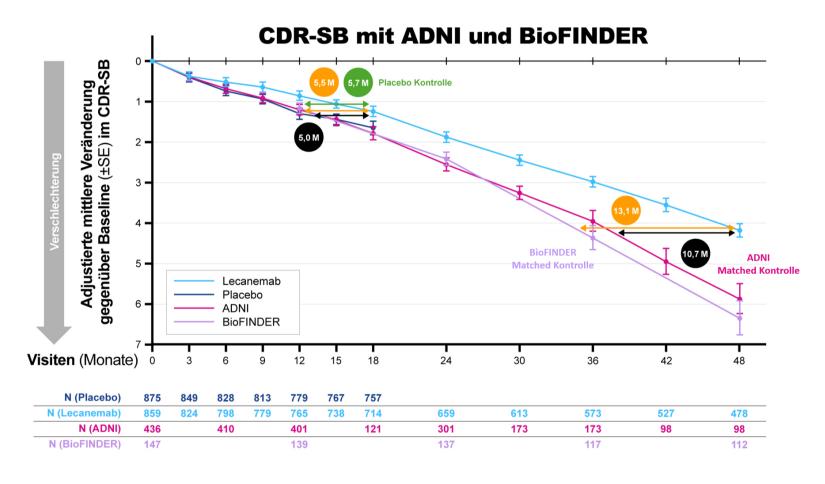

• Aβ wird in Form löslicher Monomere aus APP erzeugt.

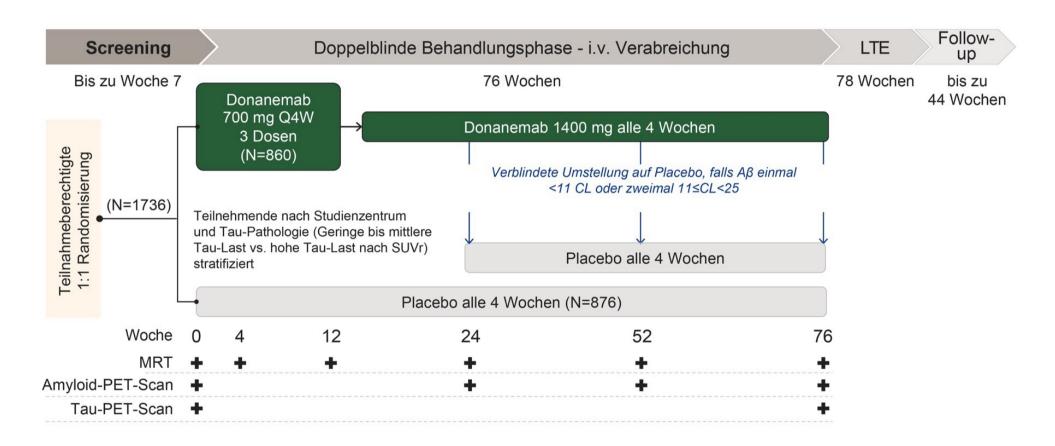
 Aus Aβ Monomeren können sukzessive intermediäre Aggregationszustände entstehen, darunter

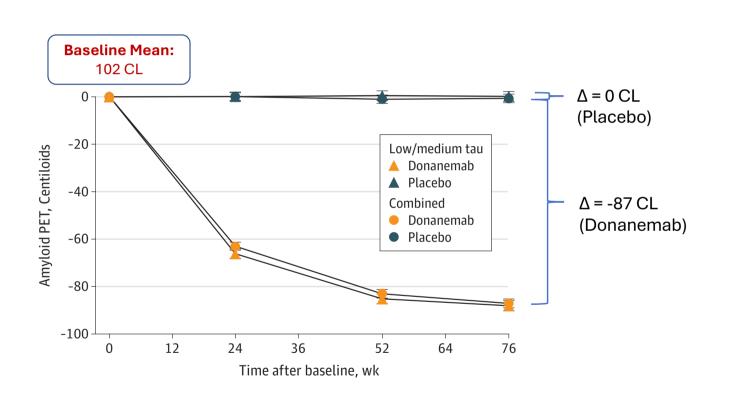

- Dimere
- Oligomere
 - Trimere, ..., Dodecamere
- Protofibrillen
- Fibrillen, die sich schließlich in
- Plaques ansammeln.

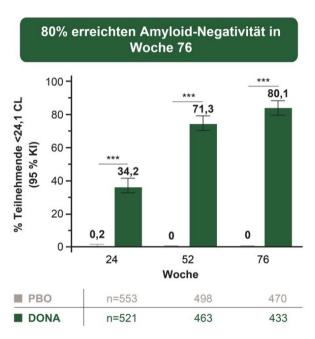

Aβ-Antikörper | Wirkmechanismus


Lecanemab | CLARITY (Phase 3) | Amyloid-PET


Lecanemab | CLARITY (Phase 3) | Primärer Endpunkt

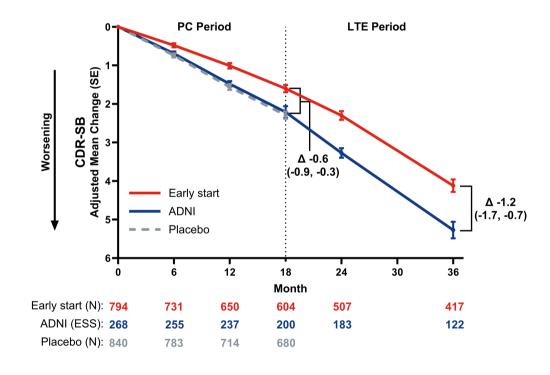

Lecanemab | OLE-Daten (48 Monate): CDR-SB (Δ)


Lecanemab | OLE-Daten (48 Mo.): CDR-SB (Zeit)

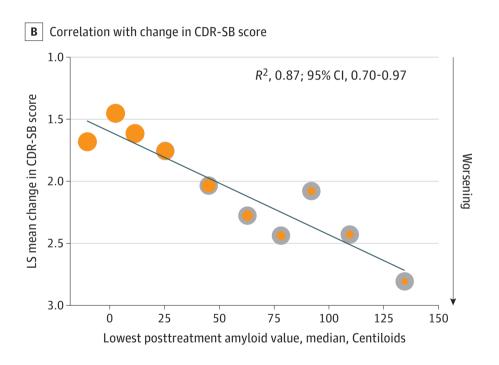


Donanemab | TRAILBLAZER-ALZ2 | Studiendesign

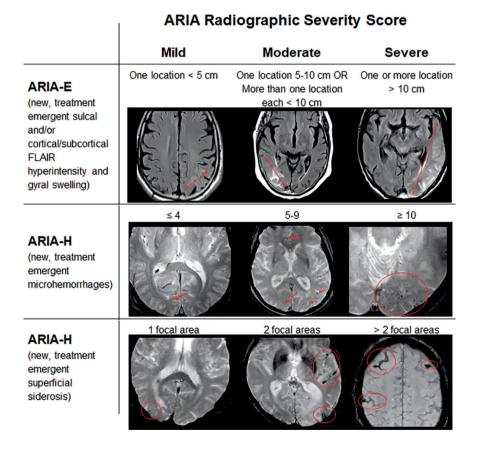
Donanemab | TRAILBLAZER-ALZ2 | Amyloid-PET



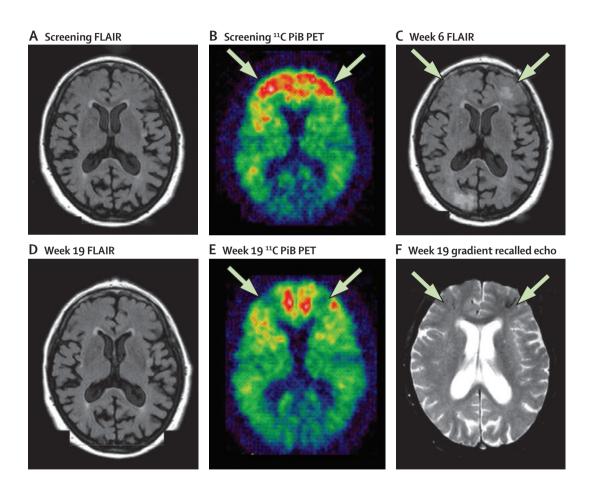
Donanemab | TRAILBLAZER-ALZ2 | Klinischer Endpunkt

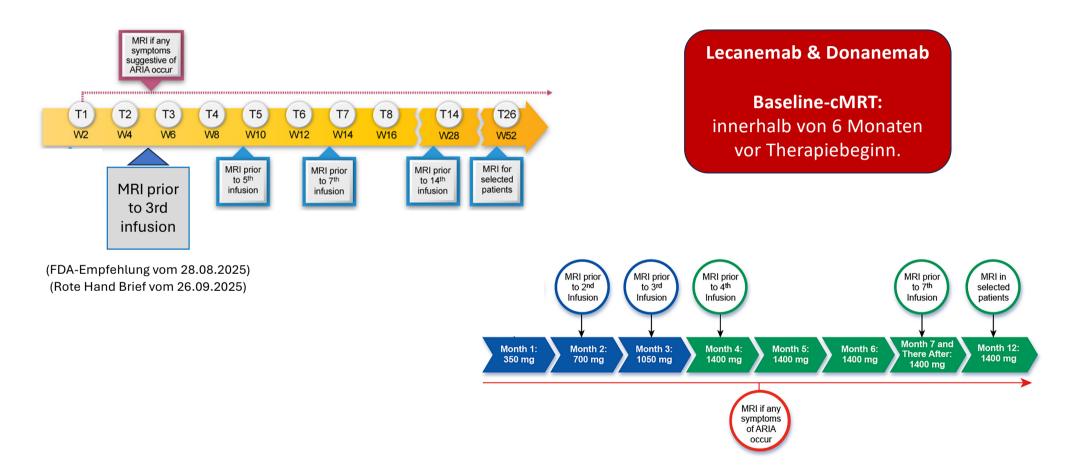


Donanemab | TRAILBLAZER-ALZ2 | long-term extension



- Im Vergleich zur ADNI-Kohorte nahm der Behandlungsvorteil von Donanemab im Verlauf von drei Jahren kontinuierlich zu, mit einem Anstieg des Δ CDR-SB von 0,6 nach 18 Monaten auf 1,2 nach 36 Monaten.
- Der Behandlungsvorteil nahm zu obwohl die Therapie bei den meisten Teilnehmern bereits abgeschlossen war.


Donanemab | post-Rx Plaque-Last & klinischer Benefit


Amyloid-related imaging abnormality (ARIA)

Amyloid-related imaging abnormality (ARIA)

ARIA monitoring

cMRT | Technische Anforderungen & Befundbericht

Summary of recommendations based on 3 patient scenarios

	Baseline/Enrollment Evaluation	Asymptomatic Monitoring	Symptomatic Patient on Therapy
Order	MRI brain dementia without IV contrast (indication: AD therapy enrollment)	MRI brain without IV contrast (indication: AD therapy monitoring)	MRI brain without (and with) IV contrast (indication: AD therapy, new symptoms)
Protocol Minimum sequences	AD therapy enrollment 2D or 3D T2 FLAIR GRE ^a ± SWI DWI 3D TI T2 FSE	AD therapy monitoring 2D or 3D T2 FLAIR GRE ^a ± SWI DWI	AD therapy monitoring 2D or 3D T2 FLAIR GRE ^a ± SWI DWI ± additional sequences
Reporting template Key findings	AD therapy enrollment Microhemorrhages Siderosis White matter hyperintensities Infarcts	AD therapy monitoring ARIA-E (edema, effusion) ARIA-H (new microhemorrhages, siderosis)	AD therapy monitoring ARIA-E ARIA-H Other acute findings
Recommended communication	Standard reporting	Moderate or s	tification required severe ARIA: communication

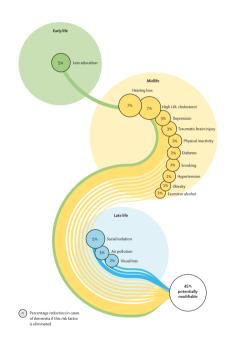
AAT | (Inkomplette) Auswahl der Kriterien zur Patientenselektion

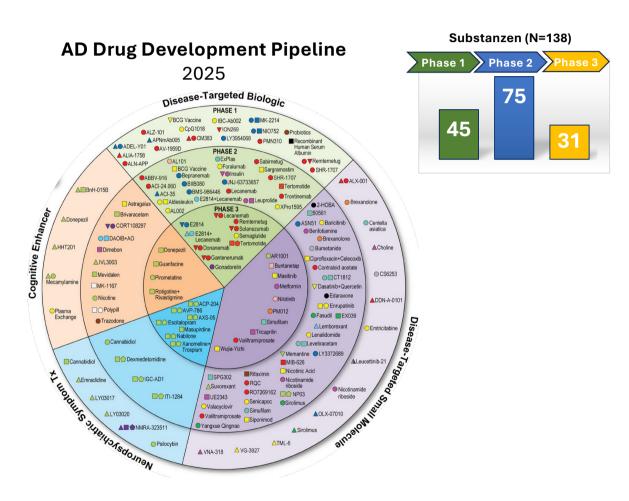
Einschlusskriterien				
Diagnose	Kognitive Defizite infolge Alzheimer-Krankheit			
Klinischer Schweregrad	MCI oder leichtgradige Demenz (Stadium 3-4 des Alzheimer-Kontinuums)			
Biomarker-Nachweis	Amyloid-PET CSF			
Ausschlusskriterien				
Co-Morbidität (1)	Andere Krankheiten (medizinisch, neurologisch, psychiatrisch) ursächlich für kognitive Defizite			
Co-Morbidität (2)	Andere Krankheiten/Medikation, die mit der Therapie interferieren könnten			
Schlaganfall / Epilepsie	Schlaganfall innerhalb der letzten 12 Monate oder epilepetischer Anfall			
OAK & Blutungsrisiko	Marcumar DOAKs Thrombozyten <50.000/μl INR >1,5 (Thrombolyse unter Therapie)			
cMRT	>4 Mikroblutungen ≥1 Makroblutung ≥1 superfizielle Siderose Leukencephalopathie Fazekas 3			
APOE-Genotyp	APOE-e4 homozygot			

APOE-Genotyp

Der häufigste APOE-Genotyp (APOE ε3/ε3): 62 % der kognitiv gesunden Menschen.

APOE $\varepsilon 4/\varepsilon 4$:


- ca. 2 % der kognitiv gesunden Menschen.
- ca. 15 % der Patienten mit Alzheimer-Krankheit.


APOE genotype	Frequency in cognitively healthy	Frequency in patients with AD (%) ²⁸⁶	Odds ratio for AD development ⁹	Odds ratio for amyloid positivity at 70 years of age ⁸⁵	
individuals (%) ²⁸⁶				Cognitively healthy	Mild cognitive impairment
ΑΡΟΕ*ε2/ε2	0.7	0.3	0.56	NA	NA
APOE*ε2/ε3	11.0	4.6	0.56	0.34	0.59
$APOE*\varepsilon3/\varepsilon3$	62.3	34.3	1.00	1.00	1.00
APOE*ε2/ε4	1.9	2.6	2.64	4.29	2.38
APOE*ε3/ε4	22.2	43.4	3.63	2.94	3.52
APOE*ε4/ε4	1.9	14.8	14.49	18.76	14.50

data from: Alzgene. Meta-analysis of all published AD association studies (case-control only) APOE_E2/3/4. Alzgene http://www.alzgene.org/Meta.asp?GeneID=83 (2010).

Zusammenfassung | Ausblick

PräventionModifizierbare Risikofaktoren

Vielen Dank für Ihre Aufmerksamkeit!

